Ch. 11 Shifted Conics

Circle

Parabola

Ellipse
Hyperbola

Shifted Parabolas

(a) $\begin{aligned}(x-h)^{2} & =4 p(y-k) \\ p & >0\end{aligned}$ $p>0$

(b) $(x-h)^{2}=4 p(y-k)$
$p<0$

(c) $(y-k)^{2}=4 p(x-h)$
$p>0$

(d) $(y-k)^{2}=4 p(x-h)$ $p<0$

PAGE 2 OF PINK SHEET

11.1 notes previously added to pink sheet:

Equations and Graphs of Parabolas

Eccentricity: $e=\frac{c}{c}$ Ellipses

$$
\begin{gathered}
\text { Foci }(\pm c, 0), c^{2}=a^{2}-b^{2} \quad \text { Foci }(0, \pm c), c^{2}=a^{2}-b^{2} \\
\boldsymbol{c}^{2}=\boldsymbol{a}^{2}-\boldsymbol{b}^{2}
\end{gathered}
$$

2 foci located on major axis "c" units from the center

11.2 notes previously added to pink sheet

Horizontal orientation $\frac{x^{2}}{a^{2}}-\frac{y^{2} \boldsymbol{a}}{b^{2}}=1$

$$
\operatorname{Foci}(\pm c, 0), c^{2}=a^{2}+b^{2}
$$

ptotes $y= \pm \frac{a}{b} x$
Vertical

$\frac{\left\lvert\, \frac{\boldsymbol{y}^{2}}{\boldsymbol{a}^{2}}-\frac{\boldsymbol{x}^{2}}{\boldsymbol{b}^{2}}=1\right.}{y_{4}} \quad$| Vertical |
| :---: |
| orientation |
| because \mathbf{y} term | is positive

2 vertices always at ends of the transverse axis

$$
c^{2}=a^{2}+b^{2}
$$

2 foci located on transverse axis "c" units from the center

Today's assignment:

 11.4 \#2, 5, 7, 9, 13, 15 21, 23, 35-41oddShow work!
Label each part that you identify.
A rough sketch may be helpful for \#35-41odd.

Label the vertex, focus, and directrix:
2. (a) $x^{2}=12 y$
(b) $(x-3)^{2}=12(y-1)$

focal diameter
$4 p=(12) \quad y=-3$ directrix $y=-2$ $p=3$

Don't solve \#3 and 4, just compare graphs before moving on to \#5
3.

$$
\frac{x^{2}}{5^{2}}+\frac{y^{2}}{4^{2}}=1
$$

$$
\frac{\left(x-(3)^{2}\right.}{5^{2}}+\frac{\left(y-(1)^{2}\right.}{4^{2}}=1
$$

Don't solve \#3 and 4, just compare graphs before moving on to \#5

$$
\begin{aligned}
& \text { 4. } \\
& \frac{x^{2}}{4^{2}}-\frac{y^{2}}{3^{2}}=1 \\
& \frac{(x-3)^{2}}{4^{2}}-\frac{(y-1)^{2}}{3^{2}}=1
\end{aligned}
$$

Cores,

11.4 \#5
$(h, k)=(2,1)$
(a) Identify the center, vertices, foci of the ellipse.
(b) Determine lengths of the major and minor axes.

5. $\frac{(\mathbf{x}-2)^{2}}{a^{2} 9}+\frac{(y-1)^{2}}{4^{b^{2}}}=\mathbf{1}$
$c^{2}=a^{3}-b^{2}$

Hints for previous assignment 11.3
37-50 Finding the Equation of a Hyperbola Find an equation for the hyperbola that satisfies the given conditions.
41. Vertices: $a=1,0)$, asymptotes: $y= \pm 5 x \quad y= \pm$
horizontal 43. $_{\text {. Vertices: }}(0, \pm 6)$, hyperbola passes through $(-5,9)$

$$
\frac{a^{2}}{36}-\frac{(-5)^{2}}{b^{2}}=1
$$

Hints for previous assignment 11.3
37-50 Finding the Equation of a Hyperbola Find an equation for the hyperbola that satisfies the given conditions.
(45. Asymptotes: $y= \pm x$, hyperbola passes through $(5,3)$

$$
y=1 x \quad \frac{b}{a} \quad \frac{a}{b} a=-x
$$

47. Foci. $(0, \pm 3)$, hyperbola passes through $(1,4)$ ok to skip \#47

rough sketch is helpful

$$
\frac{x^{(5)}}{a^{2}}-\frac{y^{(3)}}{b^{2}}=1
$$

